Molecular biomimetics: nanotechnology and bionanotechnology using genetically engineered peptides.

نویسندگان

  • Candan Tamerler
  • Mehmet Sarikaya
چکیده

Nature provides inspiration for designing materials and systems that derive their functions from highly organized structures. Biological hard tissues are hybrid materials having inorganics within a complex organic matrix, the molecular scaffold controlling the inorganic structures. Biocomposites incorporate both biomacromolecules such as proteins, lipids and polysaccharides, and inorganic materials, such as hydroxyapatite, silica, magnetite and calcite. The ordered organization of hierarchical structures in organisms begins via the molecular recognition of inorganics by proteins that control interactions and is followed by the highly efficient self-assembly across scales. Following the molecular biological principle, proteins could also be used in controlling materials formation in practical engineering via self-assembled, hybrid, functional materials structures. In molecular biomimetics, material-specific peptides could be the key in the molecular engineering of biology-inspired materials. With the recent developments of nanoscale engineering in physical sciences and the advances in molecular biology, we now combine genetic tools with synthetic nanoscale constructs to create a novel methodology. We first genetically select and/or design peptides with specific binding to functional solids, tailor their binding and assembly characteristics, develop bifunctional peptide/protein genetic constructs with both material binding and biological activity, and use these as molecular synthesizers, erectors and assemblers. Here, we give an overview of solid-binding peptides as novel molecular agents coupling bio- and nanotechnology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular biomimetics: nanotechnology through biology.

Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed by using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically ...

متن کامل

Biomolecular engineering for nanobio/bionanotechnology

Biomolecular engineering can be used to purposefully manipulate biomolecules, such as peptides, proteins, nucleic acids and lipids, within the framework of the relations among their structures, functions and properties, as well as their applicability to such areas as developing novel biomaterials, biosensing, bioimaging, and clinical diagnostics and therapeutics. Nanotechnology can also be used...

متن کامل

GEPIs-HA hybrid: a novel biomaterial for tooth repair.

Dental caries are slowly progressive and infectious disease, which result in localized dissolution and destruction of the calcified tissues. In routine clinical treatments, microleakage following with secondary caries usually occurs due to the discrepancy in physico-chemical property between filled materials and tooth. Ideal filling materials for tooth defect should be similar to the structure ...

متن کامل

Genetically engineered gold-binding polypeptides: structure prediction and molecular dynamics.

The biological control of inorganic crystal formation, morphology, and assembly is of interest to biologists and biotechnologists studying hard tissue growth and regeneration, as well as to materials scientists using biomimetic approaches for the control of inorganic material fabrication and assembly. Biomimetics requires an accurate understanding of natural mechanisms at the molecular level. S...

متن کامل

Boundary Issues in Bionanotechnology: Editorial Introduction

That a journal for the philosophy of chemistry such as Hyle devotes several issues to nanotechnology does not mean that nanotechnology would overtake chemistry, as Eric K Drexler boldly predicted when he claimed that molecular manufacture would relegate current chemical technologies in the prehistory of mankind, along with chipping flint (Drexler 1986, p. 4). Rather nanotechnology is only one p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Philosophical transactions. Series A, Mathematical, physical, and engineering sciences

دوره 367 1894  شماره 

صفحات  -

تاریخ انتشار 2009